

 ARL-TR-8213 ● NOV 2017

 US Army Research Laboratory

Pre- and Post-Processing Tools to Create
and Characterize Particle-Based
Composite Model Structures

by Michael E Fortunato, Joseph Mattson, DeCarlos E
Taylor, James P Larentzos, and John K Brennan

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-8213 ● NOV 2017

 US Army Research Laboratory

Pre- and Post-Processing Tools to Create
and Characterize Particle-Based
Composite Model Structures

by DeCarlos E Taylor, James P Larentzos, and John K
Brennan
Weapons and Materials Research Directorate, ARL

Michael E Fortunato
University of Florida, Department of Chemistry,
Gainesville, FL

Joseph Mattson
Science and Math Academy, Aberdeen High School,
Aberdeen, MD

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

November 2017
2. REPORT TYPE

Technical Report
3. DATES COVERED (From - To)

15 May 2017–01 September 2017
4. TITLE AND SUBTITLE

Pre- and Post-Processing Tools to Create and Characterize Particle-Based
Composite Model Structures

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Michael E Fortunato, Joseph Mattson, DeCarlos E Taylor, James P Larentzos,
and John K Brennan

5d. PROJECT NUMBER

HIP-17-015 (HPCMP Internship Program)
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
Weapons and Materials Research Directorate (ATTN: RDRL-WML-B)
2800 Powder Mill Road
Adelphi, MD 20783-1138

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-8213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

HPCMP
11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Microstructural heterogeneities, such as voids, cracks, and grain boundaries, dictate the macroscopic material’s properties as
well as its response to the thermal and mechanical loading that occurs in most applications and technologies. Simulating these
materials at the microscale requires sophisticated computational tools to efficiently build and analyze the structures. This work
describes a suite of computational tools developed to both create coarse-grain composite model structures and characterize their
structure and material properties. The US Army Research Laboratory’s Composite Model Builder and Analysis Toolkit
leverages the existing parallel communication framework within the Large-scale Atomic/Molecular Massively Parallel
Simulator and/or the Python mpi4py library to efficiently process systems containing billions of particles, thus enabling the
study of microstructural heterogeneity in composite materials.

15. SUBJECT TERMS

Microstructure, composite materials, polymers, void detection, Composite Model Builder and Analysis Toolkit, COMBAT,
python, LAMMPS, AMMo-PM

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

38

19a. NAME OF RESPONSIBLE PERSON

James P Larentzos
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(410) 306-0809
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.
iii

Contents

List of Figures v

List of Tables vi

Acknowledgments vii

1. Introduction 1

2. Software 1

2.1 LAMMPS 2

2.2 Combat Python Package 2

2.2.1 Input/Output 3

2.2.2 Spatial Domain Decomposition 4

2.2.3 Building Neighbor Lists 6

3. Pre-Processing Tools 7

3.1 Polycrystal Building 7

3.2 Composite Polymer Growth 7

3.2.1 Rigid Crystal Grain Expansion 7

3.2.2 Polymer Growth Model 8

3.2.3 Monomer Insertion 8

3.2.4 New Bond Creation 9

3.2.5 Compression 10

3.3 Updating Molecule IDs 11

4. Post-Processing Tools 12

4.1 Void Detection 12

4.2 Grain Boundary ID 13

4.3 Weighted Local Averaging 14

5. Conclusions 16

Approved for public release; distribution is unlimited.
iv

6. References 18

Appendix. Examples 19

List of Symbols, Abbreviations, and Acronyms 26

Distribution List 27

Approved for public release; distribution is unlimited.
v

List of Figures

Fig. 1 (Left) An example domain decomposition with 8 processors. (Right)
Cross-sectional view of the particles tracked by processor 0. Blue
local particles fall within the processor’s domain, while white ghost
particles fall outside the domain. The processor must maintain the
ghost particles because they fall within a cutoff distance from the
edge of its domain. ... 6

Fig. 2 (Left) Polycrystalline sample of FCC crystal grains output from a
Voronoi-based crystal builder program.7 Boundaries between grains
are colored white for visual clarity. (Right) Structure after rigid
affine expansion to create space between grains. 8

Fig. 3 A schematic showing the polymer growth algorithm. Potential type
particles are shown in white, active type particles are shown in green,
and polymer type particles are shown in blue. Descriptions for this
example: 1) initial system starts with 5 potential type particles and 1
active type particle; 2) a bond was created between a potential type
particle and the active type particle; 3) another bond has been
created, where the middle active type particle is converted to a
polymer type particle; 4) a repeat of the process in Step 3. 10

Fig. 4 Polymerization at 0% (left), 50% (middle), and 100% (right)
completion. Active type particles are colored green, potential type
particles are colored white, and polymer type particles are colored
blue. .. 10

Fig. 5 (Left) Average chain length as a function of simulation time for an
example polymerization with a target degree of polymerization of
50. (Right) Final distribution of the polymer chain lengths at the end
of the polymerization. .. 11

Fig. 6 (Left) A cross-sectional view of a sample structure with a centered
spherical void. (Middle) Visualization of both the crystal and a
lattice of dummy particles before deletion of overlapping dummy
particles. Note that despite the illusion of a continuum-looking blue
cube, the image consists of individual blue particles representing
dummy particles on a lattice. (Right) Resulting representation of the
spherical void following deletion of overlapping dummy
particles. ... 12

Fig. 7 An illustration of the algorithm used to locate grain boundaries. The
processor iterates through the particles, finds the nearest neighbors,
and assigns a unique identifier defined by the number of surrounding
grains and the type of grains. In this example, the highlighted
particle in the center of each frame is located on the boundary
between Grains 1 and 2, and receives an identifier accordingly. 14

Approved for public release; distribution is unlimited.
vi

Fig. 8 A 2500 × 300 × 300 nm3 (1.1-billion particle) polycrystalline sample
with an average grain size distribution of 225 nm that has been
processed with the combat Python module. Grain boundary
interfaces (top) and triple junctions (bottom) are shown, where
particles are colored by their grain ID. .. 14

Fig. 9 Local environment around an example particle (red) within a cutoff
distance represented by the dashed circle. The local average
properties of particle 0 are a function of the properties of Particles
1–5 weighted by their separation distances r. Information from
Particle 6 is not included, as it falls outside of the cutoff
distance. ... 15

Fig. 10 Comparison of instantaneous temperature (left) and a Lucy-weighted
local average temperature (right) ... 16

List of Tables

Table A-1 Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) input for building a face-centered-cubic single
crystal ... 20

Table A-2 Input for nanocrystal_builder.py script .. 20

Table A-3 A Python script using the combat module to update molecule
information ... 20

Table A-4 LAMMPS input for composite polymer growth 21

Table A-5 A Python script using the combat module to update molecules from
bond topology .. 22

Table A-6 LAMMPS input for void detection .. 23

Table A-7 A Python script using the combat module to identify grain boundary
particles .. 24

Table A-8 A Python script using the combat module to calculate weight-
averaged local temperature .. 25

Approved for public release; distribution is unlimited.
vii

Acknowledgments

The authors are grateful to Shawn Coleman (US Army Research Laboratory
[ARL]), Dan Foley (Drexel University), and Garritt Tucker (Colorado State
University) for providing the initial version of the polycrystal builder and helping
with its implementation; Tim Sirk (ARL) for discussions on building model
polymer chains; Mitch Wood (Sandia National Laboratories) for suggesting the
rigid body dynamics capability within the Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS); and Aidan Thompson and Steve
Plimpton (Sandia National Laboratories) for general guidance on utilizing
LAMMPS capabilities. The authors acknowledge funding from the Department
of Defense (DOD) High Performance Computing Modernization Program
Internship Program (HIP-17-015) and the Office of Naval Research. This work
was supported in part by a grant of computer time from the DOD High
Performance Computing Modernization Program at the ARL DOD
Supercomputing Resource Center.

Approved for public release; distribution is unlimited.
viii

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.
1

1. Introduction

Particle-based simulations at micrometer-length scales are required in order to
study the effects of microstructural features that commonly exist in composite
materials. These microstructural heterogeneities, such as voids, cracks, and grain
boundaries, dictate the macroscopic material’s properties, as well as its response
to the thermal and mechanical loading that occurs in most applications and
technologies. Access to these length scales can be computationally taxing for
fully atomistic simulations; thus, micro- and mesoscale methods involving
coarse-graining are commonly employed to extend the spatial and temporal
scales. While coarse-graining reduces the number of degrees-of-freedom in the
system, there remains a “big data” challenge in efficiently processing extremely
large data sets containing information for O(billions) of particles over the entire
trajectory of a simulation. This work describes a suite of computational tools
developed to both create coarse-grain composite model structures, and
characterize their structure and material properties. These computational tools,
hereafter referred to as the ARL Composite Model Builder and Analysis Toolkit
(COMBAT), leverage the existing parallel communication framework within the
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)1 and/or
the Python mpi4py2 library to efficiently process systems containing billions of
particles, thus enabling the study of microstructural heterogeneity in composite
materials.

The technical report is organized as follows: an overview of the underlying
software used in the ARL COMBAT suite is provided in Section 2, followed by
a description of pre-processing tools in Section 3, post-processing tools in Section
4, and example usage of the tool features in the Appendix. Most of the tools can
be used independently, so readers that are interested in solely polymer building
or void detection can seek out those subsections and the corresponding example
code usage independently.

2. Software

The software tools described here leverage functionality present within the
LAMMPS1 software package, or were developed independently in a Python
module, combat, to analyze data sets produced by LAMMPS. The following
sections present a brief overview of LAMMPS and the combat Python module,
including dependencies and capabilities. Readers are directed to the LAMMPS
website at http://lammps.sandia.gov for more thorough documentation on the
LAMMPS framework and user commands. The combat Python module is

Approved for public release; distribution is unlimited.
2

available at https://github.com/USArmyResearchLab under the Army Materials
Modeling for Particle Models software suite (pending ARL Public Release
approval).

2.1 LAMMPS

LAMMPS1 is a highly-scalable domain decomposition software developed by the
Department of Energy at Sandia National Laboratories, and can be used to
perform a variety of simulations from the atomistic scale to the continuum scale.
LAMMPS efficiently scales in parallel, and is routinely used to perform
particle-based simulations containing O(billions) of particles. Functionality is
partitioned into separate add-on packages located in the LAMMPS source
directory that can be optionally included when building/installing LAMMPS. The
following add-on packages are integral to the software tools described hereafter,
and must be installed in order to follow the examples provided in the Appendix:

• MC: required for polymer bond creation

• MISC: required for monomer insertion

• MOLECULE: required for polymer growth

• RIGID: required for rigid expansion of polycrystalline materials

• VORONOI: required for void volume calculations in crystalline materials

2.2 Combat Python Package

A Python module, combat, was developed in order to efficiently post-process data
sets produced by LAMMPS. The module contains code to perform domain
decomposition, build neighbor lists, and compute locally weighted averages in
parallel. The spatial domain decomposition process involves identifying both the
particles located within the domain (hereafter referred to as “local particles”), and
the particles that are not located within a domain, but are within the cutoff
distance of any particle within the domain (hereafter referred to as “ghost
particles”). Periodic boundary conditions in 3 dimensions are considered in this
process. Once the system has been subdivided, each processor is assigned an
individual subdomain, containing all the necessary information to perform
calculations that rely on neighboring particles (e.g., Lucy weighted averages3),
and can execute commands independently to dramatically reduce the time-to-
solution and improve parallel efficiency. Additionally, data is structured on each
processor as a pandas4 DataFrame, allowing complex querying and efficient
calculations on the tabulated data. Additional details on file input/output (I/O),

Approved for public release; distribution is unlimited.
3

domain decomposition, and neighbor list construction are discussed in the
following sections.

2.2.1 Input/Output

In the present implementation of combat, the reading and writing of data files is
currently limited to LAMMPS data file and dump file formats, but can be readily
extended to other file formats with appropriate modifications. The following code
is used to read a dump file format in serial, and include a buffer region or “skin”
of periodic neighboring particles within a 10 Å cutoff (required for accurate
neighbor computations):

s = combat.System.from_dump(filename, cutoff=10.0)

The combat.System.from_dump class method returns an object with attribute
particles that is a pandas DataFrame containing per-particle data. The I/O
procedure changes slightly when performing analysis in parallel, where the
following code is the parallel analog using mpi4py2:

from mpi4py import MPI
comm = MPI.COMM_WORLD
s = combat.System.from_dump(filename, comm=comm, cutoff=10.0)

At this point in the code execution, each processor can independently perform
computations locally on their own DataFrame using s.particles.

Note that when performing calculations within pandas, additional columns may
be created within the DataFrame. By default, when attempting to use combat to
write a new, modified output dump file, all columns that exist in the pandas
DataFrame will be written to the output dump file. This may be undesirable or
problematic in cases where large output dump files are produced. For instance,
when a neighbor list has been created (discussed in Section 2.2.3), a new column
is added to the pandas DataFrame containing the neighbors for each particle.
Often, it may be unnecessary to print this information to the output dump file. In
general, it is good practice to remove any undesirable data columns from the
pandas DataFrame before writing to the output dump file.

As an example, some computations within combat may build a neighbor list
stored as a column named “neighbors”, while other computations may build a
neighbor list stored as a column named “iloc_neighbors”. These data columns
correspond to lists of index values and integer locations in the DataFrame,
respectively, and are solely used for efficient execution within pandas, but these
data columns are not needed in the output dump file. In this case, the following
checks should be included to ensure that undesired information is not written to
the dump file:

Approved for public release; distribution is unlimited.
4

if 'neighbors' in s.particles:
 del s.particles['neighbors']
if 'iloc_neighbors' in s.particles:
 del s.particles['iloc_neighbors']

Similar commands can be used to remove any other undesirable data columns
contained within the pandas DataFrame.

The following code is used to write a dump file in serial:

s.write_dump(filename, header=True, ghost=False)

The header and ghost keyword arguments are optional. These keywords designate
if the header information is included, and if particles identified as ghost particles
are included in the dump file (ghost particles are further discussed in Section
2.2.2).

The following code can be used to write a dump file in parallel:

from subprocess import Popen, PIPE
import numpy as np

if comm.rank==0:

print('gathering global number of particles’)
nparticles=comm.gather(len(s.particles[s.particles['ghost']==0]),
root=0)
if comm.rank == 0:

s.global_particles = np.sum(nparticles)
s.dump_header('dump.header')

s.write_dump('dump.{}p'.format(comm.rank), header=False, ghost=False)
comm.Barrier()
if comm.rank == 0:

print('concatenating')
Popen('cat dump.header dump.*p > dump', shell=True).communicate()
Popen('rm dump.header dump.*p', shell=True).communicate()

2.2.2 Spatial Domain Decomposition

Spatial domain decomposition partitions a 3-D space into smaller subdomains of
equal volume, such that the assignment of n processors to n subdomains
distributes computational cost across all processors. For a set of particles of
uniform density in an orthorhombic simulation cell, this can be accomplished by
creating a 3-D regular grid of processors that is superimposed onto the simulation
cell. Each processor is responsible for the particles that reside in its subdomain
(the local particles). In addition, each processor must include a buffer region or
“skin” surrounding its subdomain, so as to include all neighboring particles
within a cutoff distance (the ghost particles). A final level of complexity is added
when considering periodic boundary conditions, which requires processors with

Approved for public release; distribution is unlimited.
5

subdomains located at the global simulation cell boundary to track particles on
the opposite end of the simulation cell.

The current implementation of combat uses MPI enabled by the mpi4py Python
package2. Each processor independently reads the entire data file containing
particle coordinates, and performs the following operations:

1) Define the subdomain boundaries in each dimension, and claim
ownership of all particles that reside within the subdomain.

2) Identify ghost particles from neighboring subdomains that reside within a
specified cutoff distance.

3) Recreate a skin of periodic images of particles for each dimension
identified as periodic, and repeat the ghost particle identification in Step
2.

4) Delete all particles from memory that are not owned and are not ghost
particles.

At this point in the procedure, each processor has sufficient information to
calculate local properties, and can proceed independently until further
communication of global properties or the output of data to the memory is
required. Ultimately, in order to write a new data file with newly computed per-
particle properties, each processor writes its own file containing data for the local
particles it owns, and then the processor with rank 0 concatenates the files into
one data file.

Figure 1 (left) shows an example spatial-domain decomposition of a sample
structure using 8 processors. Each colored region represents a different
subdomain for which a different processor is responsible for the particles
contained within the subdomain. Using a cross-sectional view, Fig. 1 (right)
shows the particles that processor 0 is responsible for monitoring, where the local
particles are colored blue and the ghost particles are colored white. The domain
boundaries for processor 0 are shown as black lines.

https://paperpile.com/c/KsHvzh/GTTx

Approved for public release; distribution is unlimited.
6

Fig. 1 (Left) An example domain decomposition with 8 processors. (Right) Cross-
sectional view of the particles tracked by processor 0. Blue local particles fall within the
processor’s domain, while white ghost particles fall outside the domain. The processor must
maintain the ghost particles because they fall within a cutoff distance from the edge of its
domain.

2.2.3 Building Neighbor Lists

By minimizing the amount of data each processor contains, neighbor list
construction and neighbor-dependent calculations can be performed more
efficiently. Each processor uses a pandas DataFrame data structure to track its
particles, and constructs neighbor lists using the SciPy5 KDTree data structure to
efficiently identify nearest neighbors. By leveraging pandas, SciPy, and NumPy6,
as well as the efficient vectorized operations contained within those Python
packages, neighbor-dependent calculations can be computed orders of magnitude
faster in wall-clock time as compared to pure “pythonic” algorithms.

Neighbor lists that store the index values of neighbor particles as well as the
integer location in the DataFrame can be constructed. These columns are stored
in the DataFrame and labeled as “neighbors” or “iloc_neighbors” accordingly.

Methods that require a neighbor list will determine if a neighbor list needs to be
created/updated. Alternatively, the following can be used to manually build (or
update) neighbor lists:

s.neighbors_all(cutoff=10.0, remove_self=True)
s.iloc_neighbors(cutoff=10.0, remove_self=True)

The remove_self keyword argument is optional, and determines whether a
particle will appear in its own neighbor list. This parameter allows for control
where some calculations that require neighbor lists may include
self-contributions, while others may not (e.g., a local density calculation).

Approved for public release; distribution is unlimited.
7

3. Pre-Processing Tools

3.1 Polycrystal Building

The examples contained in this technical report use a Voronoi-based nanocrystal
builder Python tool developed previously at ARL.7 The nanocrystal builder reads
a LAMMPS dump file of a reference single crystal, and applies a Voronoi
tessellation scheme to create a polycrystalline sample with a user-defined average
grain size distribution (see Sections A.1 and A.2 of the Appendix for details of
building the single crystal and polycrystalline samples, respectively). For
application to the examples provided in the Appendix, it is required that each
grain in the polycrystalline sample is identified using a different molecule ID
within the LAMMPS data file format. Additionally, image flags must be accurate;
this information is necessary for performing rigid-body dynamics. An example
polycrystalline sample that was constructed using the Voronoi-based nanocrystal
builder7 is shown in Fig. 2 (left), with grain boundary regions colored white. This
sample structure was built by first creating a single crystal face-centered cubic
(FCC) structure with a lattice spacing of 6.5 Å in a cubic simulation box with
length 65.0 Å.

3.2 Composite Polymer Growth

For illustration of the methodology described in the next few sections, linear
bead-spring polymer chains are inserted between crystal grains in a
polycrystalline structure. The examples in Section A.3 of the Appendix use the
polycrystalline sample described in the previous section, where 80 polymer
chains are built with an average chain length of 50 monomer units.

3.2.1 Rigid Crystal Grain Expansion

A rigid affine expansion of crystal grains must first be performed to create
unoccupied space for which polymer chains can be grown. Individual grains are
given unique molecule IDs, and are treated as rigid bodies using the LAMMPS
“fix rigid” command. Simulation box expansion is performed using the
LAMMPS “fix deform” command, with particle positions remapped accordingly
with changes in the box dimensions. The affinely expanded structure is shown in
Fig. 2 (right).

https://paperpile.com/c/KsHvzh/BO7v

Approved for public release; distribution is unlimited.
8

Fig. 2 (Left) Polycrystalline sample of FCC crystal grains output from a Voronoi-based
crystal builder program.7 Boundaries between grains are colored white for visual clarity.
(Right) Structure after rigid affine expansion to create space between grains.

3.2.2 Polymer Growth Model

In principle, any particle interaction model can be used during polymer growth.
However, in practice the choice of the polymer–polymer interactions
significantly influences the resulting polymer chain structure. In this example,
polymer–polymer pairwise interactions were turned off during polymer growth
or “polymerization” to bias the growth of chains towards elongated structures and
minimize self-entanglement. Including a pairwise interaction enhanced chain
agglomeration and resulted in aggregates of chains that inhibited crystal grains
from approaching to a realistic distance during final compression of the
composite. The inclusion of a crystal–polymer interaction is crucial to ensure that
polymer particles do not penetrate crystal grains during the polymer growth
process. For the example presented in this report, a soft repulsive potential using
the LAMMPS “pair_style dpd” command is used for the crystal–polymer
interaction, but in principle any interaction potential can be applied. During the
polymerization stage, crystal particles are held in place by a harmonic spring
force, tethering the particles to their initial position using the LAMMPS “fix
spring/self” command.

3.2.3 Monomer Insertion

Following the rigid expansion of the crystal grains, the volume between these
grains is filled with monomer particles using the LAMMPS “fix deposit”
command, which inserts a particle into the simulation box only if the particle does
not overlap (within a specified cutoff distance) any existing particle. In order to
enforce chain linearity and eliminate the possibility of forming closed loops, 3
different particle types are used. This methodology could be adapted to produce
other chain geometries using additional particle types. All polymer particles

Approved for public release; distribution is unlimited.
9

involved in 2 bonds ultimately end up as the first particle type (polymer type).
The second type (active type) represents chain ends that can be involved in a
maximum of one bond. The final particle type (potential type) represents lone
monomer particles that have yet to be incorporated into a polymer chain, and thus
are not involved in any bonds.

The insertion of monomer particles is performed in 2 steps. First, active type
monomer particles are randomly inserted into the volume between crystal grains.
Inserting the active type particles first, which grow into polymer chains, ensures
that these particles are homogeneously distributed throughout the unoccupied
volume between grains. This step also provides more precise regulation of the
number of chains that will be grown within the sample. Afterwards, potential type
monomer particles are inserted. The total number of particles that should be
inserted can be pre-determined based on the desired mass fraction of the polymer
binder in the composite. The number of active type particles that are inserted is
determined by the desired degree of polymerization. Each initial active type
monomer grows to become one polymer chain, and therefore the number of active
type particles should equal the total number of particles divided by the desired
degree of polymerization. For example, if 4,000 polymer particles are necessary
for a given mass fraction and the desired degree of polymerization is 50, then 80
active type monomers and 3,920 potential type monomers should be inserted
(80 = 4,000/50; 3,920 = 4,000 – 80).

3.2.4 New Bond Creation

Bond creation is implemented using the LAMMPS “fix bond/create” command,
where complete details can be found in the LAMMPS documentation. In
summary, after every n timesteps, bonds are created between particles of
specified types if they satisfy a separation distance cutoff criteria. LAMMPS
allows various bond topologies (angle, dihedral, improper) when creating new
bonds, but is limited to allowing only one new bonding topology type (see
LAMMPS documentation for more details).

In the polymer growth algorithm presented here, bonds are only created between
chain ends (active type) and lone monomers (potential type). When a new bond
is formed, potential type particles become active type, and if the new bond was
the second bond for the active type, the active type particle becomes a polymer
type particle. At the end of the polymerization process, any remaining potential
type particles are deleted. Remaining active type particles are chain end particles.
These can either be converted to polymer type particles or left as a separate type
for distinction later. A schematic representation of the polymerization algorithm
is shown in Fig. 3.

Approved for public release; distribution is unlimited.
10

Fig. 3 A schematic showing the polymer growth algorithm. Potential type particles are
shown in white, active type particles are shown in green, and polymer type particles are shown
in blue. Descriptions for this example: 1) initial system starts with 5 potential type particles
and 1 active type particle; 2) a bond was created between a potential type particle and the
active type particle; 3) another bond has been created, where the middle active type particle
is converted to a polymer type particle; 4) a repeat of the process in Step 3.

The polymerization process does not guarantee 100% complete polymerization,
as it depends on the mobility of potential type particles and the accessibility of
active type polymer chain ends. However, if the simulation is run for a sufficiently
long time, polymerization can achieve 100% completion. The polymerization
process at 0%, 50%, and 100% completion is shown in Fig. 4.

Fig. 4 Polymerization at 0% (left), 50% (middle), and 100% (right) completion. Active
type particles are colored green, potential type particles are colored white, and polymer type
particles are colored blue.

3.2.5 Compression

Following the polymer growth process, the restraint fixing crystal particles to
their positions is removed, polymer–polymer interactions are turned on, and a
barostat is applied to control the external pressure on the system.
Isothermal–isobaric dynamics are performed to compress the sample to the
desired density. The value of the imposed pressure needed to achieve the desired
density will be dependent on the specific sample, but convergence of this value

Approved for public release; distribution is unlimited.
11

to achieve the desired density within satisfactory limits is expected to occur
quickly.

3.3 Updating Molecule IDs

During bond creations using the “fix bond/create” command, LAMMPS does not
update molecule IDs; however, this information can be recovered from the bond
topology list using graph theory. Using the NetworkX Python package,8 a graph
was built using the bonds listed in the output from LAMMPS. Subgraphs
representing different polymer chains can then be extracted from this graph, and
a list of nodes (i.e., particles) in each connected subgraph can be used to update
the molecule IDs for each polymer chain. The number of nodes in each subgraph
is related to the molecular weight of each polymer chain, which is used to define
the molecular weight distribution. This algorithm based on graph theory is
handled within the NetworkX Python package8. This feature was included in the
combat module, and the following code can be used to generate appropriate
molecule IDs:

s = combat.System.from_data(filename, atom_style=’molecular’)
s.molecules_from_bonds()
s.write_data(new_filename, atom_style=’molecular’)

The above code assumes that bonds are present in the LAMMPS data file. Figure
5 (left) shows the average length of the polymer chains as a function of time
during the polymerization. Figure 5 (right) shows the final distribution of polymer
chain lengths.

Fig. 5 (Left) Average chain length as a function of simulation time for an example
polymerization with a target degree of polymerization of 50. (Right) Final distribution of
the polymer chain lengths at the end of the polymerization.

https://paperpile.com/c/KsHvzh/Ai1P

Approved for public release; distribution is unlimited.
12

4. Post-Processing Tools

4.1 Void Detection

Voids can form naturally in composite materials and are crucial components of
the microstructure heterogeneity in these materials. These voids can have a
variety of shapes and sizes, from near-spherical shapes to highly irregular
cylindrical shapes, and far beyond. Voids can be introduced during the initial
structure construction (intentionally or not), or may form dynamically upon a
stimulus (i.e., shock). In either case, it is critical to have the ability to identify the
presence and location of voids in such model systems. The algorithm used to
probe the model composite structures for unoccupied space involved the
construction of a lattice of dummy particles throughout the sample. For each
lattice site, an overlap with existing particles (using a user-defined cutoff) results
in the deletion of the dummy particle at that lattice site. Any dummy particles
remaining after this process effectively fill the unoccupied space in the structure.
The construction of the dummy particle lattice and the deletion of the particles
overlapping with existing particles were performed using functionality already
present in LAMMPS. Additionally within LAMMPS, clusters of dummy particles
were identified to distinguish between multiple voids, and the volume of each
cluster of dummy particles was calculated using the VORONOI package in
LAMMPS, which uses the open-source voro++ package.9 Example LAMMPS
input can be found in Section A.4 of the Appendix. Figure 6 shows the 3 steps
during the void detection algorithm: (left) a crystal with a centered spherical void
before dummy particle insertion, (middle) the crystal and dummy particles before
deletion of overlapping dummy particles, and (right) resulting representation of
the void volume within the spherical void.

Fig. 6 (Left) A cross-sectional view of a sample structure with a centered spherical void.
(Middle) Visualization of both the crystal and a lattice of dummy particles before deletion
of overlapping dummy particles. Note that despite the illusion of a continuum-looking blue
cube, the image consists of individual blue particles representing dummy particles on a
lattice. (Right) Resulting representation of the spherical void following deletion of
overlapping dummy particles.

https://paperpile.com/c/KsHvzh/2ZGD

Approved for public release; distribution is unlimited.
13

An alternative method for calculating the void volume from the collection of
dummy particles is to simply count the number of dummy particles and multiply
by the volume per lattice site. This method provides a different physical
representation of the void volume, as this is related to the accessible volume of a
probe particle. Conversely, the volume resulting from the Voronoi tessellation is
related to the void volume, or empty space not occupied by particles’ van der
Waals spheres. The size of the probe and van der Waals spheres is determined by
the cutoff distance used to identify overlaps between system particles and dummy
particles.

4.2 Grain Boundary ID

One common defect in polycrystalline materials is the presence of boundaries
between crystal grains. These grain boundaries play key roles in the
microstructure properties and overall behavior of such materials. The location and
identification of grain boundaries can provide a means of probing the specific
behaviors associated with these grain boundaries. The algorithm presented here
processes LAMMPS dump files under the combat Python module and is used to
identify and label particles at the grain boundary interfaces and triple junctions.
An example script to execute the combat Python module is provided in Section
A.5 of the Appendix. Note that this algorithm assumes that as input, the
LAMMPS dump file contains information that associates each particle with a
grain ID (in this case, the molecule ID is used to represent the grain ID, although
any column identifying the grain ID can be used generally).

Upon execution of the combat module, the neighboring particles within a
specified cutoff are identified, as discussed in Section 2.2.3. At this point, each
particle is aware of the neighboring particles’ positions and grain IDs. For a given
particle, the algorithm identifies the number of surrounding grains by searching
through the neighbors, identifying the neighbor grain IDs, then counting the
number of unique grain IDs, as depicted in Fig. 7. A numerical identifier
describing the number of surrounding grains is then assigned to the set of data
associated with the current particle. As illustrated in Fig. 8, grain boundary
interfaces are formed at the interface between 2 grains (i.e., particles with 2
surrounding grains), whereas triple junction lines are formed at the intersection
of 3 crystal grains (i.e., particles with 3 surrounding grains).

Approved for public release; distribution is unlimited.
14

Fig. 7 An illustration of the algorithm used to locate grain boundaries. The processor
iterates through the particles, finds the nearest neighbors, and assigns a unique identifier
defined by the number of surrounding grains and the type of grains. In this example, the
highlighted particle in the center of each frame is located on the boundary between Grains
1 and 2, and receives an identifier accordingly.

Fig. 8 A 2500 × 300 × 300 nm3 (1.1-billion particle) polycrystalline sample with an
average grain size distribution of 225 nm that has been processed with the combat Python
module. Grain boundary interfaces (top) and triple junctions (bottom) are shown, where
particles are colored by their grain ID.

4.3 Weighted Local Averaging

A per-particle instantaneous property, such as the temperature calculated from
instantaneous velocities, can be statistically noisy compared to a global-average
property. Therefore, it is of interest to calculate local-average properties for each
particle, which includes information from neighboring particles within a cutoff
distance. It is common practice to weight the contribution of neighboring particles
due to their separation distance from the particle of interest. In general, a local
average property (Ui) of particle i can be written as

Approved for public release; distribution is unlimited.
15

 𝑈𝑈𝑖𝑖 =
∑ 𝑤𝑤(𝑟𝑟𝑖𝑖𝑖𝑖)𝑋𝑋𝑖𝑖𝑖𝑖

∑ 𝑤𝑤(𝑟𝑟𝑖𝑖𝑖𝑖)𝑖𝑖
 (1)

where 𝑋𝑋𝑗𝑗 is a per-particle property of particle j, and 𝑤𝑤(𝑟𝑟𝑖𝑖𝑗𝑗) can be any arbitrary
weighting function. A common weighting function is the Lucy function,3 which
weights contributions of particles that are closer more than those that are farther
away, and has the form

 𝑤𝑤(𝑟𝑟𝑖𝑖𝑗𝑗) = (1 + 3 𝑟𝑟𝑖𝑖𝑖𝑖
𝑅𝑅𝑐𝑐

)(1 − 𝑟𝑟𝑖𝑖𝑖𝑖
𝑅𝑅𝑐𝑐

)3 (2)

where 𝑅𝑅𝑐𝑐 is the cutoff distance. Figure 9 shows a schematic of the local
environment around a particle indicating the contributions from particles within
a cutoff distance.

Fig. 9 Local environment around an example particle (red) within a cutoff distance
represented by the dashed circle. The local average properties of particle 0 are a function of
the properties of Particles 1–5 weighted by their separation distances r. Information from
Particle 6 is not included, as it falls outside of the cutoff distance.

Another commonly used weighting function is a quadratic function with the form

 𝑤𝑤(𝑟𝑟𝑖𝑖𝑗𝑗) = 𝐴𝐴(1 − 𝑟𝑟𝑖𝑖𝑖𝑖
𝑅𝑅𝑐𝑐

)2 (3)

where A is an arbitrary pre-factor. Note that to calculate the mean without
considering separation distances, set 𝑤𝑤(𝑟𝑟𝑖𝑖𝑗𝑗) = 1.

The combat module has been generalized to use any weighting function, and can
average any per-particle data present in the DataFrame. The Lucy-weighted local
average (implemented by default) can be performed using the following code:

s.weighted_avg(data, cutoff=10.0)

https://paperpile.com/c/KsHvzh/Uuu6

Approved for public release; distribution is unlimited.
16

where data is the name of a column in the s.particles DataFrame. The following
code can be used to implement a new weighting function (e.g., a quadratic
function) without any modification to the combat module:

import numpy as np
def quad(dist):
 ratio = dist/10

return 15/2/np.pi*np.power(1-ratio, 2)
s.weighted_avg(data, cutoff=10.0, weighting=quad)

In this example, quad is a user-defined callable function that accepts an array of
separation distances, and returns an array of the associated weighting values. The
new column in the DataFrame will be assigned a name using the __name__
attribute of the callable function, for example “weighted_quad_temperature”, if a
callable function quad was used and it averaged a column named “temperature”.

A comparison of the instantaneous temperature (calculated from instantaneous
velocities) (left), and a Lucy-weighted local average of the temperature (right) is
shown in Fig. 10 (example provided in Section A.6 of the Appendix). It is
apparent that the local averaging has smoothed out the property of interest, and
the local features have become more distinct.

Fig. 10 Comparison of instantaneous temperature (left) and a Lucy-weighted local
average temperature (right)

5. Conclusions

The tools presented here enable the efficient construction and characterization of
composite models for materials composed of microstructural heterogeneity using
functionality present in the LAMMPS software package. Due to the
micrometer-size scale of these features, large-scale simulations that generate
extremely large data sets of particle properties are required. In order to efficiently

Approved for public release; distribution is unlimited.
17

analyze the resulting data, a high-performance Python module was developed
implementing MPI and performing efficient vector computation. Although the
tools described in this report were originally developed to study composite
energetic materials, the tools have been generalized and can be applied to other
particle models at any length scale. Additionally, the tools were designed to be
flexible to allow weighted local averaging on any per-particle quantity that may
be output by LAMMPS, and to allow arbitrary user-defined weighting functions.

Approved for public release; distribution is unlimited.
18

6. References

1. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J
Comput Phys.1995;117:1–19.

2. Dalcin L, Paz R, Storti MJ. MPI for Python. Parallel Distrib Comput.
2005;65(9):1108–1115.

3. Lucy LB. A numerical approach to the testing of the fission hypothesis.
Astron J. 1977;82:1013.

4. McKinney W. Data structures for statistical computing in Python.
Proceedings of the 9th Python in Science Conference. p. 51–56.

5. Jones E, Oliphant T, Peterson P. SciPy: open source scientific tools for
Python. SciPy developers; 2001 [accessed 2017 Sep 19].
https://www.scipy.org.

6. van der Walt S, Colbert SC, Varoquaux G. The NumPy array: a structure for
efficient numerical computation. CISE. 2011;13 (2);22–30.

7. Foley D, Coleman SP, Tucker G, Tschopp MA. Voronoi-based
nanocrystalline generation algorithm for atomistic simulations. Aberdeen
Proving Ground (MD): Army Research Laboratory (US); 2016 Dec. Report
No.: ARL-TN-0806.

8. Hagberg A, Swart PS, Chult D. Exploring network structure, dynamics, and
function using NetworkX. Los Alamos (NM): Los Alamos National
Laboratory (US); 2008.

9. Rycroft CH. VORO++: a three-dimensional Voronoi cell library in C++.
Chaos. 2009;19(4):041111.

http://paperpile.com/b/KsHvzh/q8Y8
http://paperpile.com/b/KsHvzh/q8Y8
http://paperpile.com/b/KsHvzh/q8Y8
http://paperpile.com/b/KsHvzh/GTTx
http://paperpile.com/b/KsHvzh/GTTx
http://paperpile.com/b/KsHvzh/GTTx
http://paperpile.com/b/KsHvzh/Uuu6
http://paperpile.com/b/KsHvzh/Uuu6
http://paperpile.com/b/KsHvzh/Uuu6
http://paperpile.com/b/KsHvzh/Uuu6
http://paperpile.com/b/KsHvzh/Uuu6
http://paperpile.com/b/KsHvzh/QH9f
http://paperpile.com/b/KsHvzh/QH9f
http://paperpile.com/b/KsHvzh/zh53
http://paperpile.com/b/KsHvzh/zh53
http://paperpile.com/b/KsHvzh/Rc8v
http://paperpile.com/b/KsHvzh/Rc8v
http://paperpile.com/b/KsHvzh/Rc8v
http://paperpile.com/b/KsHvzh/Rc8v
http://paperpile.com/b/KsHvzh/Rc8v
http://paperpile.com/b/KsHvzh/BO7v
http://paperpile.com/b/KsHvzh/BO7v
http://paperpile.com/b/KsHvzh/BO7v
http://paperpile.com/b/KsHvzh/Ai1P
http://paperpile.com/b/KsHvzh/2ZGD
http://paperpile.com/b/KsHvzh/2ZGD
http://paperpile.com/b/KsHvzh/2ZGD

Approved for public release; distribution is unlimited.
19

Appendix. Examples

Approved for public release; distribution is unlimited.
20

The following examples are designed to be executed in their own directory. In some
cases, the output produced from one example may be used as input in another
example.

A.1 Building a Single Crystal

Table A-1 Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) input
for building a face-centered-cubic single crystal

log log.singlecrystal
units metal
atom_style atomic
boundary p p p
lattice fcc 6.5
region crystal_box block 0 10 0 10 0 10 units lattice
create_box 1 crystal_box
create_atoms 1 region crystal_box
mass * 100
velocity all create 300.0 12345
write_dump all custom dump.singlecrystal id type x y z vx vy vz
quit

A.2. Building a Polycrystalline Sample

Table A-2 Input for nanocrystal_builder.py script

single
../singlecrystal/dump.singlecrystal
50
0, 100, 0, 100, 0, 100
none
polycrystal

Table A-3 A Python script using the combat module to update molecule information

import combat
s = combat.System.from_data('data.polycrystal', atom_style='atomic')
s.particles['mol'] = s.particles['type']
s.particles['type'] = 1
s.write_dump('dump.polycrystal')
s.write_data('data.polycrystal.molecules', atom_style='molecular')

Approved for public release; distribution is unlimited.
21

A.3 Growing Polymer Chains

Table A-4 LAMMPS input for composite polymer growth

variable nchains equal 80
variable total_particles equal 4000-${nchains}

log log.grow_polymer
units metal
atom_style molecular
boundary p p p
comm_modify vel yes

region box block 0 1 0 1 0 1 units box
create_box 4 box bond/types 1 angle/types 1 &
 extra/bond/per/atom 4 extra/angle/per/atom 9 &
 extra/dihedral/per/atom 18 extra/special/per/atom 27
read_data ../polycrystal/data.polycrystal.molecules add merge
nocoeff

mass 1 200
mass 2 28.0
mass 3 28.0
mass 4 28.0
pair_style dpd 1000 12.0 12345
bond_style harmonic
angle_style harmonic
special_bonds lj 0 1 1
pair_coeff 1 1 0 0
pair_coeff 2*4 2*4 0 0
pair_coeff 1 2*4 0.1 1.0
bond_coeff 1 5.0 2.5
angle_coeff 1 4.5 140.00

fix rigid all rigid molecule torque * off off off &
 force * off off off
variable expandx equal xhi*1.5
variable expandy equal yhi*1.5
variable expandz equal zhi*1.5
fix deform all deform 1 x final 0.0 ${expandx} &
 y final 0.0 ${expandy} z final 0.0 ${expandz} remap x
dump particles_dump all custom 10 expansion.dump.* &
 id type mol x y z
run 100

unfix rigid
unfix deform
undump particles_dump

group xstal type 1
fix tether xstal spring/self 100.0
region polymer_growth block EDGE EDGE EDGE EDGE EDGE EDGE &
 units box
thermo 100
thermo_style custom step temp atoms bonds angles
dump d_deposit all custom 5000 dump.deposit id type x y z
fix active all deposit ${nchains} 3 1 40560 region &
 polymer_growth near 6 attempt 1000

unfix active

Approved for public release; distribution is unlimited.
22

Table A-4 LAMMPS input for composite polymer growth (continued)

fix potential all deposit ${total_particles} 4 1 27664 &
 region polymer_growth near 6 attempt 1000
run ${total_particles}

write_data data.deposit

unfix potential
undump d_deposit
group polymer type 2 3 4
velocity polymer create 1000.0 82882
timestep 0.005
fix random_walk all bond/create 1 4 3 5.0 1 atype 1 &
 iparam 1 3 jparam 2 2
fix nve all nve/limit 0.1
compute nbonds all property/atom nbonds
dump particles_dump all custom 100 particles.dump.* &
 id type c_nbonds x y z vx vy vz
compute bonds polymer property/local batom1 batom2
dump bonds_dump polymer local 1000 bonds.dump.* &
 c_bonds[1] c_bonds[2]

run 50000

group unreacted type 4
delete_atoms group unreacted
group active type 3
set group active type 2
write_data data.expanded_composite nocoeff
quit

Table A-5 A Python script using the combat module to update molecules from bond topology

import combat
s = combat.System.from_data('data.expanded_composite', \
 atom_style='molecular')
s.molecules_from_bonds()
s.write_data('data.expanded_composite.molecules', \
 atom_style='molecular')

Approved for public release; distribution is unlimited.
23

A.4. Void Detection

Table A-6 LAMMPS input for void detection

log log.void_detection
units metal
atom_style atomic
boundary p p p
lattice fcc 6.5
region crystal_box block 0 15 0 15 0 15 units lattice
create_box 2 crystal_box
create_atoms 1 region crystal_box
group crystal type 1
region sph_void1 sphere 30 30 30 20 units box
delete_atoms region sph_void1
region sph_void2 sphere 70 70 70 20 units box
delete_atoms region sph_void2
pair_style zero 6.5
mass * 1
pair_coeff * *

neighbor 0.0 bin

lattice sc 1
create_atoms 2 box

group dummy type 2

delete_atoms overlap 6.5 dummy crystal

compute voronoi dummy voronoi/atom
compute voronoi_vol dummy reduce sum c_voronoi[1]

variable dummy_x atom x
variable dummy_y atom y
variable dummy_z atom z

compute void_cluster dummy cluster/atom 6.5
compute void_chunk dummy chunk/atom c_void_cluster compress yes
fix chunk_vol dummy ave/chunk 1 1 1 void_chunk &
 v_dummy_x v_dummy_y v_dummy_z c_voronoi[1] &
 file void.chunk.vol

variable voronoi_vol equal c_voronoi_vol

dump void_cluster dummy custom 1 dump.void.dummy &
 id type x y z c_void_chunk c_voronoi[1]
dump crystal crystal custom 1 dump.void.crystal &
 id type x y z
fix void_props all print 1 "$(v_voronoi_vol)" &
 append dump.void.props

run 1

quit

Approved for public release; distribution is unlimited.
24

A.5 Grain Boundary Identification

Table A-7 A Python script using the combat module to identify grain boundary particles

import combat

uncomment for parallel version
from mpi4py import MPI
comm = MPI.COMM_WORLD

uncomment for parallel version
s=combat.System.from_dump('dump.polycrystal',comm=comm, cutoff=10.0)
s = combat.System.from_dump('dump.polycrystal', cutoff=10.0)
s.num_grains = len(set(s.particles['mol'].values))
s.make_neigh_tree()
s.define_grain_boundaries()
s.shrink_boundary_identifiers()
s.particles = s.particles[s.particles['num_grains'] > 1]
del s.particles['neighbors']
uncomment for parallel version
'''if comm.rank==0:

print('gathering global number of particles')
nparticles=comm.gather(len(s.particles[s.particles['ghost']==0]), \
 root=0)
if comm.rank == 0:

s.global_particles = np.sum(nparticles)
s.dump_header('dump.header')

s.write_dump('dump.{}p'.format(comm.rank), header=False, ghost=False)
comm.Barrier()
if comm.rank == 0:

print('concatenating')
Popen('cat dump.header dump.*p > dump.boundaries, \
 shell=True).communicate()
Popen('rm dump.header dump.*p', shell=True).communicate()'''

s.write_dump('dump.boundaries')

Approved for public release; distribution is unlimited.
25

A.6 Weighted Local Averaging Temperature

Table A-8 A Python script using the combat module to calculate weight-averaged local
temperature

import combat
import numpy as np

uncomment for parallel version
from mpi4py import MPI
comm = MPI.COMM_WORLD

uncomment for parallel version
s = combat.System.from_dump('dump.singlecrystal', comm=comm,
cutoff=12)
s = combat.System.from_dump('dump.singlecrystal', cutoff=12)

s.make_neigh_tree()

s.temperature(mass=100)
s.weighted_avg('temperature', 12)
def quad(dist):
 ratio = dist/12
 return 15/2/np.pi*np.power(1-ratio, 2)
s.weighted_avg('temperature', 12, weighting=quad)

def avg(dist):
 return [1 for _ in dist]

s.weighted_avg('temperature', 12, weighting=avg)

del s.particles['iloc_neighbors']

uncomment for parallel version
'''if comm.rank==0:

print('gathering global number of particles')
nparticles=comm.gather(len(s.particles[s.particles['ghost']==0]), \
 root=0)
if comm.rank == 0:

s.global_particles = np.sum(nparticles)
s.dump_header('dump.header')

s.write_dump('dump.{}p'.format(comm.rank), header=False, ghost=False)
comm.Barrier()
if comm.rank == 0:

print('concatenating')
Popen('cat dump.header dump.*p > dump.weighting',

shell=True).communicate()
Popen('rm dump.header dump.*p', shell=True).communicate()'''

s.write_dump('dump.weighting')

Approved for public release; distribution is unlimited.
26

List of Symbols, Abbreviations, and Acronyms

3-D 3-dimensional

ARL US Army Research Laboratory

COMBAT Composite Model Builder and Analysis Toolkit

FCC face-centered cubic

I/O input/output

ID identification

LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator

Approved for public release; distribution is unlimited.
27

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIR ARL
 (PDF) IMAL HRA
 RECORDS MGMT
 RDRL DCL
 TECH LIB

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 19 DIR ARL
 (PDF) RDRL WML
 N J TRIVEDI
 RDRL WML B
 D TAYLOR
 J P LARENTZOS
 J K BRENNAN
 B RICE
 E F C BYRD
 B BARNES
 N DANG
 J GOTTFRIED
 S IZVEKOV
 P LAFOND
 F DE LUCIA
 RDRLWMM F
 S COLEMAN
 M TSCHOPP
 RDRLWMM G
 T SIRK
 J ANDZELM
 R ELDER
 B RINDERSPACHER
 Y SLIOZBERG

 1 US NAVAL RSRCH LAB
 (PDF) I SCHWEIGERT

 4 SANDIA NATIONAL LABS
 (PDF) M WOOD
 S J PLIMPTON

 A P THOMPSON
 S MOORE

 1 COLORADO SCHOOL OF
 (PDF) MINES
 G TUCKER

 2 HPCMP
 (PDF) L DAVIS
 C DAHL

 1 N CAROLINA ST UNIV
 (PDF) M MANSELL

 2 UNIV OF FLORIDA
 (PDF) DEPT OF CHEM
 C COLINA
 M FORTUNATO

 1 PURDUE UNIVERSITY
 (PDF) A STRACHAN

 1 ENGILITY CORP
 (PDF) T MATTOX

 1 JE PURKINJE UNIV
 (PDF) M LISAL

 1 ABERDEEN HIGH SCHOOL
 (PDF) J MATTSON

1 UNIVERSITY OF MISSOURI
 (PDF) T SEWELL

1 CEA-DAM
 (PDF) JB MAILLET

1 LOS ALAMOS NATL LABS
 (PDF) E KOBER

Approved for public release; distribution is unlimited.
28

INTENTIONALLY LEFT BLANK.

	Contents
	List of Figures
	List of Tables
	Acknowledgments
	1. Introduction
	2. Software
	2.1 LAMMPS
	2.2 Combat Python Package
	2.2.1 Input/Output
	2.2.2 Spatial Domain Decomposition
	2.2.3 Building Neighbor Lists

	3. Pre-Processing Tools
	3.1 Polycrystal Building
	3.2 Composite Polymer Growth
	3.2.1 Rigid Crystal Grain Expansion
	3.2.2 Polymer Growth Model
	3.2.3 Monomer Insertion
	3.2.4 New Bond Creation
	3.2.5 Compression

	3.3 Updating Molecule IDs

	4. Post-Processing Tools
	4.1 Void Detection
	4.2 Grain Boundary ID
	4.3 Weighted Local Averaging

	5. Conclusions
	6. References
	Appendix. Examples
	List of Symbols, Abbreviations, and Acronyms

